首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16914篇
  免费   2059篇
  国内免费   244篇
电工技术   17篇
综合类   584篇
化学工业   4863篇
金属工艺   108篇
机械仪表   282篇
建筑科学   88篇
矿业工程   4篇
能源动力   21篇
轻工业   11625篇
水利工程   11篇
石油天然气   31篇
无线电   227篇
一般工业技术   762篇
冶金工业   68篇
原子能技术   48篇
自动化技术   478篇
  2024年   117篇
  2023年   414篇
  2022年   581篇
  2021年   1289篇
  2020年   687篇
  2019年   805篇
  2018年   627篇
  2017年   706篇
  2016年   621篇
  2015年   756篇
  2014年   861篇
  2013年   1015篇
  2012年   1197篇
  2011年   1191篇
  2010年   884篇
  2009年   777篇
  2008年   726篇
  2007年   950篇
  2006年   829篇
  2005年   698篇
  2004年   586篇
  2003年   428篇
  2002年   384篇
  2001年   250篇
  2000年   177篇
  1999年   215篇
  1998年   127篇
  1997年   74篇
  1996年   141篇
  1995年   170篇
  1994年   177篇
  1993年   149篇
  1992年   136篇
  1991年   88篇
  1990年   66篇
  1989年   71篇
  1988年   51篇
  1987年   52篇
  1986年   35篇
  1985年   33篇
  1984年   24篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   28篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Iron acquisition mediated by siderophores, high-affinity chelators for which bacteria have evolved specific synthesis and uptake mechanisms, plays a crucial role in microbiology and in host–pathogen interactions. In the ongoing fight against bacterial infections, this area has attracted biomedical interest. Beyond several approaches to interfere with siderophore-mediated iron uptake from medicinal and immunochemistry, the development of high-affinity protein scavengers that tightly complex the siderophores produced by pathogenic bacteria has appeared as a novel strategy. Such binding proteins have been engineered based on siderocalin—also known as lipocalin 2—an endogenous human scavenger of enterobactin and bacillibactin that controls the systemic spreading of commensal bacteria such as Escherichia coli. By using combinatorial protein design, siderocalin was reshaped to bind several siderophores from Pseudomonas aeruginosa and, in particular, petrobactin from Bacillus anthracis, none of which is recognized by the natural protein. Such engineered versions of siderocalin effectively suppress the growth of corresponding pathogenic bacteria by depriving them of their iron supply and offer the potential to complement antibiotic therapy in situations of acute or persistent infection.  相似文献   
52.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
53.
介绍了动物和植物型非常规蛋白资源的种类及其制备蛋白基木材胶黏剂的研究现状和存在的问题,展望了非常规蛋白胶黏剂的发展前景。  相似文献   
54.
55.
The cellular changes induced by heterologous protein expression in the yeast Saccharomyces cerevisiae have been analysed on many levels and found to be significant. However, even though high‐level protein production poses a metabolic burden, evaluation of the expression host at the level of the metabolome has often been neglected. We present a comparison of metabolite profiles of a wild‐type strain with those of three strains producing recombinant antibody variants of increasing size and complexity: an scFv fragment, an scFv–Fc fusion protein and a full‐length IgG molecule. Under producing conditions, all three recombinant strains showed a clear decrease in growth rate compared with the wild‐type strain and the severity of the growth phenotype increased with size of the protein. The levels of 76 intracellular metabolites were determined using a targeted (semi) quantitative mass spectrometry based approach. Based on unsupervised and supervised multivariate analysis of metabolite profiles, together with pathway activity profiling, the recombinant strains were found to be significantly different from each other and from the wild‐type strain. We observed the most prominent changes in metabolite levels for metabolites involved in amino acid and redox metabolism. Induction of the unfolded protein response was detected in all producing strains and is considered to be a contributing factor to the overall metabolic burden on the cells.  相似文献   
56.
Isoelectric solubilisation/precipitation (ISP) process was applied to goose liver (GL) for protein extraction. The gelation properties of proteins extracted by acid processes (ACP, pH 2.0, 2.5 and 3.0) and alkaline processes (ALP, pH 11.0, 11.5 and 12.0) were estimated, where the unextracted ground GL was set as the control. Nearly 58.39~79.00% of GL proteins were recovered by ISP treatments. High molecular weight (100~250 kDa) proteins were found to be partially hydrolysed by ACP, while few changes in proteins occurred during ALP. As evidenced by rheological and textural measurements, ALP proteins formed gels with high elasticity and superior texture, whereas ACP proteins had inferior gelation properties. Moreover, ALP proteins were able to form a highly interconnected and homogeneous three‐dimensional microstructure. Predominantly, gels produced by 11.0 had optimal texture and the lowest cooking loss (< 0.05). These results suggested that the ISP process (ALP) is a potential method to improve the economic value of GL.  相似文献   
57.
Protein–protein interactions (PPIs), many of which are dominated by α-helical recognition domains, play key roles in many essential cellular processes, and the dysregulation of these interactions can cause detrimental effects. For instance, aberrant PPIs involving the Bcl-2 protein family can lead to several diseases including cancer, neurodegenerative diseases, and diabetes. Interactions between Bcl-2 pro-life proteins, such as Mcl-1, and pro-death proteins, such as Bim, regulate the intrinsic pathway of apoptosis. p53, a tumor-suppressor protein, also has a pivotal role in apoptosis and is negatively regulated by its E3 ubiquitin ligase HDM2. Both Mcl-1 and HDM2 are upregulated in numerous cancers, and, interestingly, there is crosstalk between both protein pathways. Recently, synergy has been observed between Mcl-1 and HDM2 inhibitors. Towards the development of new anticancer drugs, we herein describe a polypharmacology approach for the dual inhibition of Mcl-1 and HDM2 by employing three densely functionalized isoxazoles, pyrazoles, and thiazoles as mimetics of key α-helical domains of their partner proteins.  相似文献   
58.
59.
The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations ≤ 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the ‘hormetic’ response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon.  相似文献   
60.
We describe a novel, easy and efficient combinatorial phage display peptide substrate-mining method to map the substrate specificity of proteases. The peptide library is displayed on the pVII capsid of the M13 bacteriophage, which renders pIII necessary for infectivity and efficient retrieval, in an unmodified state. As capture module, the 3XFLAG was chosen due to its very high binding efficiency to anti-FLAG mAbs and its independency of any post-translational modification. This library was tested with Factor-VII activating protease (WT-FSAP) and its single-nucleotide polymorphism variant Marburg-I (MI)-FSAP. The WT-FSAP results confirmed the previously reported Arg/Lys centered FSAP cleavage site consensus as dominant, as well as reinforcing MI-FSAP as a loss-of-function mutant. Surprisingly, rare substrate clones devoid of basic amino acids were also identified. Indeed one of these peptides was cleaved as free peptide, thus suggesting a broader range of WT-FSAP substrates than previously anticipated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号